• Users Online: 585
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 37  |  Issue : 1  |  Page : 1-6

The optimal effect-site concentration of propofol for endotracheal suctioning in intensive care unit patients


1 Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, Taipei, Taiwan, Republic of China
2 National Defense Medical Center, School of Public Health, Taipei, Taiwan, Republic of China
3 Department of Anesthesiology, Taipei Veterans General Hospital and National Defense Medical Center, Taipei, Taiwan, Republic of China

Correspondence Address:
Zhi-Fu Wu
Department of Anesthesiology, National Defense Medical Center, Tri-Service General Hospital, No. 325, Section 2, Chenggong Road, Neihu, Taipei 114, Taiwan
Republic of China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1011-4564.200738

Rights and Permissions

Objective: To evaluate the optimal effect-site concentration (Ce) of propofol during endotracheal suction (ETS) in the postoperative Intensive Care Unit (ICU) sedated patients. Design and Setting: The study design was a prospective randomized clinical study in a 13-bed ICU in a medical center. Patients: Thirteen mechanically ventilated patients were included in this study. Methods: All included postoperative patients received sedation by target-controlled infusion (TCI) of propofol under bispectral index (BIS) monitoring and 2–4 μg/kg/h fentanyl infusion for analgesia to keep numerical rating scale ≤4. While ETS was need, the sedation interventions were performed. We used the up-and-down method with a step size of propofol Ce 0.2 μg/ml for the next intervention. The sedation interventions of 1, 2, and 3 were baseline propofol Ce, baseline propofol Ce +0.2 mg/ml, and baseline propofol Ce +0.4 μg/ml, respectively. The predetermined propofol Ce was maintained for 5 min before ETS. Arterial systolic blood pressures (SBPs), arterial diastolic blood pressure (DBP), heart rates (HRs), and BIS before and after ETS were recorded. No moderate or severe coughing with limb movement was the primary outcome, and the surge of SBP, DBP, and HR ≤20% of baseline was the secondary outcome. Results: There were 39, 72, and 45 ETS were performed in the intervention 1, 2, and 3, respectively. In the primary outcome, the successful rates of ETS were 100%, 37.5%, and 15.4% in the intervention 3, 2, and 1, respectively (P < 0.001). In the secondary outcomes, the successful rates were 100% in all interventions. However, the surge of SBP (P = 0.009), DBP (P = 0.025), and HR (P = 0.009) were significant higher in the intervention 1 and 2 than the intervention 3. Right after the ETS, significant increase in BIS level was observed in the intervention 1 (13.9± 7.9) and 2 (14.4± 7.5) except for intervention 3 (−2.8± 14.5) (P = 0.003). Conclusions: An increase of propofol Ce 0.4 mg/ml for 5 min before ETS provided adequate sedation result in markedly attenuated ETS-induced coughing, limb movement, and hyperdynamic status during ETS while the use of TCI propofol sedation in postoperative ICU patients.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1580    
    Printed26    
    Emailed0    
    PDF Downloaded175    
    Comments [Add]    

Recommend this journal