• Users Online: 373
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Contacts Login 
ORIGINAL ARTICLE
Year : 2017  |  Volume : 37  |  Issue : 1  |  Page : 7-11

A practical and pyrogen-free preparation of 11C-L-methionine in a good manufacturing practice-compliant approach


1 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China
2 School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, China
3 Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China
4 PET Center, National Taiwan University Hospital, Taipei, Taiwan, China

Correspondence Address:
Daniel H Shen
No. 325, Section 2, Chenggong Road, Neihu District, Taipei City 114, Taiwan
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1011-4564.200735

Rights and Permissions

Aims: 11C-L-methionine, an amino acid tracer used to delineate certain tumor tissues, has proven to be a prevailing nonfluorodeoxyglucose positron emission tomography (PET) radiopharmaceutical. We intended to prepare 11C-L-methionine by following modified synthetic strategies at a rebuilt working area to meet the PET drug current good manufacturing practice (cGMP) and Pharmaceutical Inspection Co-operation Scheme (PIC/S) regulations. Furthermore, we overcame the problem of pyrogen cross-contamination using a cleaner and more efficient program. Material and Methods: The task of upgrading air filtration equipment was integrated with the set of Web-Based Building Automation system (WebCTRL®). 11C-L-methionine synthesis was carried out in accordance with redesigned methods to meet the requirements of PET drug cGMP. The product quality was tested by a series of quality control tests and was found to be satisfactory. Depyrogenation was carried out by three different methods with different flow rates and flushing durations. The results were examined through limulus amebocyte lysate clotting test. Results: The level of air cleanliness in each section meets the PIC/S GMP standards after the reconstructions. Moreover, after delicate modifications, the radiochemical yield of 11C-L-methionine was 36.20% ± 3.59% (based on 11C-CH3I, n = 7), which is about 10% higher than the average former yield. Besides, the used depyrogenation methods could wipe the bioburden off within 8 h. Conclusions: The modifications done not only offer a good production environment but also protect the products from contamination. The modified approaches in both 11C-L-methionine production and depyrogenation resulted in prominent progress in stability and efficiency as well.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1262    
    Printed26    
    Emailed0    
    PDF Downloaded106    
    Comments [Add]    

Recommend this journal