• Users Online: 234
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Contacts Login 
ORIGINAL ARTICLE
Year : 2018  |  Volume : 38  |  Issue : 3  |  Page : 107-112

Dosimetric effect of the gantry rotations of a novel trunk phantom using an area integration algorithm


1 Department of Radiation Biology, Radiotherapy, Radiodiagnosis and Radiography, College of Medicine, Lagos University Teaching Hospital, Lagos, Nigeria
2 Department of Radiology, Federal Medical Center, Medical Physics Unit, Asaba, Nigeria
3 Department of Radiology, Medical Physics Unit, University College Hospital, Ibadan, Nigeria
4 Department of Physics, Faculty of Science, University of Ibadan, Ibadan, Nigeria

Correspondence Address:
Mr. Akintayo Daniel Omojola
Department of Radiology, Federal Medical Center, Medical Physics Unit, Asaba, Delta State
Nigeria
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/jmedsci.jmedsci_113_17

Rights and Permissions

Background: Treatment planning systems (TPSs) have proved to be a useful tool in predetermining how a treatment outcome will be in radiotherapy. The accuracy of any TPS to calculate dose to any arbitrary point within a material is largely dependent on the mathematical algorithm used. Aims: The purpose of this study was to design a local trunk phantom and use the phantom to check the percentage dose accuracy of the Area Integration Algorithm of a Precise PLAN 2.16 TPS if it is in agreement with results obtained from manufacturer's verification by varying the gantry angle and whether it is within ± 5% International Commission on Radiation Units and Measurements (ICRU) minimal limit. Materials and Methods: The study was executed with a locally designed phantom made of Plexiglas with six insert and an ionization chamber port. The phantom was simulated using a HiSpeed NX/i computed tomography scanner and Precise PLAN 2.16 TPS for application of beam setup parameters. The mimicked organs for the inserts were: 25%–75% Glycerol-Water for liver, pure carboxyl methyl cellulose was used for lungs, 30%–70% Glycerol-Water for muscle, 40%–60% Glycerol-Water was used for adipose, pure Sodium hypochlorite was used for bone and pure sodium laureth sulfate (Texapon) for kidney. Results: The maximum percentage (%) deviation with a large field for six inhomogeneous inserts and with bone only homogeneous inserts were 3.4% and 2.9%, respectively. The maximum % deviation with a small field for six inhomogeneous inserts was 3.2%. The % deviation between the solid water phantom and the locally designed phantom was 3.5%. Conclusion: The Area Integration Algorithm has shown an overall accuracy of 4% below 5% ICRU minimal limit. There was no statistically significant difference in field sizes and in inhomogeneity/homogeneity, respectively. Variation exists in % deviation for small field size with parallel opposed field between our verification and the manufacturers.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed202    
    Printed35    
    Emailed0    
    PDF Downloaded67    
    Comments [Add]    

Recommend this journal