Journal of Medical Sciences

ORIGINAL ARTICLE
Year
: 2017  |  Volume : 37  |  Issue : 1  |  Page : 7--11

A practical and pyrogen-free preparation of 11C-L-methionine in a good manufacturing practice-compliant approach


Kang-Po Li1, Ming-Kuan Hu2, Cheng-Yi Cheng3, Li-Fan Hsu1, Ta-Kai Chou3, Chyng-Yann Shiue4, Daniel H Shen3 
1 Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China
2 School of Pharmacy, National Defense Medical Center, Taipei, Taiwan, China
3 Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, China
4 PET Center, National Taiwan University Hospital, Taipei, Taiwan, China

Correspondence Address:
Daniel H Shen
No. 325, Section 2, Chenggong Road, Neihu District, Taipei City 114, Taiwan
China

Aims: 11C-L-methionine, an amino acid tracer used to delineate certain tumor tissues, has proven to be a prevailing nonfluorodeoxyglucose positron emission tomography (PET) radiopharmaceutical. We intended to prepare 11C-L-methionine by following modified synthetic strategies at a rebuilt working area to meet the PET drug current good manufacturing practice (cGMP) and Pharmaceutical Inspection Co-operation Scheme (PIC/S) regulations. Furthermore, we overcame the problem of pyrogen cross-contamination using a cleaner and more efficient program. Material and Methods: The task of upgrading air filtration equipment was integrated with the set of Web-Based Building Automation system (WebCTRL®). 11C-L-methionine synthesis was carried out in accordance with redesigned methods to meet the requirements of PET drug cGMP. The product quality was tested by a series of quality control tests and was found to be satisfactory. Depyrogenation was carried out by three different methods with different flow rates and flushing durations. The results were examined through limulus amebocyte lysate clotting test. Results: The level of air cleanliness in each section meets the PIC/S GMP standards after the reconstructions. Moreover, after delicate modifications, the radiochemical yield of 11C-L-methionine was 36.20% ± 3.59% (based on 11C-CH3I, n = 7), which is about 10% higher than the average former yield. Besides, the used depyrogenation methods could wipe the bioburden off within 8 h. Conclusions: The modifications done not only offer a good production environment but also protect the products from contamination. The modified approaches in both 11C-L-methionine production and depyrogenation resulted in prominent progress in stability and efficiency as well.


How to cite this article:
Li KP, Hu MK, Cheng CY, Hsu LF, Chou TK, Shiue CY, Shen DH. A practical and pyrogen-free preparation of 11C-L-methionine in a good manufacturing practice-compliant approach.J Med Sci 2017;37:7-11


How to cite this URL:
Li KP, Hu MK, Cheng CY, Hsu LF, Chou TK, Shiue CY, Shen DH. A practical and pyrogen-free preparation of 11C-L-methionine in a good manufacturing practice-compliant approach. J Med Sci [serial online] 2017 [cited 2019 Nov 20 ];37:7-11
Available from: http://www.jmedscindmc.com/article.asp?issn=1011-4564;year=2017;volume=37;issue=1;spage=7;epage=11;aulast=Li;type=0