• Users Online: 372
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Contacts Login 
Year : 2019  |  Volume : 39  |  Issue : 5  |  Page : 217-222

A monoclonal enzyme-linked immunoassay for the detection of botulinum neurotoxin type E

1 National Defense Medical Center, Institute of Preventive Medicine, Taipei, Taiwan
2 National Defense Medical Center, Institute of Preventive Medicine; Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
3 National Defense Medical Center, Institute of Preventive Medicine; National Defense Medical Center, Graduate Institute of Physiology, Taipei, Taiwan

Correspondence Address:
Dr. Cheng-Che Liu
National Defense Medical Center, Graduate Institute of Physiology, Room 6105, 6F, No. 161, Sec. 6, Minchuan E. Road, Taipei 114
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/jmedsci.jmedsci_203_18

Rights and Permissions

Background and Aim: Botulinum neurotoxin Type E (BoNT/E), one of the most lethal toxin known, is the common contamination in fishery products or fish consumption that causes foodborne botulism. It is necessary to establish a sensitive and specific method for the detection of BoNT/E because of its extremely low lethal dose. Methods: In this study, a practical enzyme-linked immunosorbent assay for BoNT/E detection was developed. The assay is based on the sandwich format using monoclonal antibodies of two distinct specificities. An affinity-purified anti-BoNT/E light chain Mab (1E1) is utilized to adsorb BoNT/E from solution, and the second anti-BoNT/E heavy chain C terminus Mab (5E1) conjugated with peroxidase is then used to form sandwich complexes, and peroxidase allows color development and measurement of optical density at 450 nm. Results: Standard curves were linear over the range of 5–100 ng/ml BoNT/E. The limit of detection was below 10 ng/ml in phosphate-buffered saline buffer. The developed BoNT/E assay also showed no cross-reaction to Type A neurotoxin (BoNT/A) and Type B neurotoxin (BoNT/B). Conclusion: Herein, a sensitive and accurate ELISA for BoNT/E detection was presented. It has the potential to utilize in vivo BoNT/E analysis and contamination monitoring.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded197    
    Comments [Add]    

Recommend this journal